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Ⅰ. Introduction

The rapid advancement of wireless communication

technology has led to a demand for higher data rates,

particularly as we move towards the implementation

and deployment of beyond 5G (B5G) and 6G net-

works[1-3]. This surge in demand is driven by the grow-

ing need for faster, more reliable, and more efficient

communication capabilities to support an ever-in-

creasing number of connected devices and data-in-

tensive applications. Multipleinput multiple-output

(MIMO) technology, which leverages the use of mul-

tiple antennas at both the transmitter and receiver

ends, has emerged as a highly promising and effective

solution to meet this demand[4,5]. By enabling simulta-

neous transmission and reception of multiple data

streams, MIMO technology significantly enhances

spectral efficiency and overall network performance,

making it an essential component in the evolution of

wireless communication systems.

The concept of MIMO is often enhanced by the

use of beamforming. Beamforming is a signal process-

ing technique used in wireless communication systems

to direct the transmission or reception of signals in

specific directions[6]. In beamforming architectures,

both analog and hybrid beamforming use phase shift-

ers, which can cause quantization errors because of

their limited resolution and non-linear properties.

These errors can negatively impact the system’s over-

all performance[7]. Fully digital precoding, on the oth-

er hand, offers greater flexibility in beam steering by

allowing baseband processors to directly generate

phase and magnitude values for each channel, result-

ing in higher resolution and improved spectral effi-

ciency[8].

Given the potential for a higher number of users
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compared to transmit antenna elements, integrating

nonorthogonal multiple access (NOMA) with MIMO

systems can further enhance spectral efficiency[9].

Achieving maximum spectral efficiency necessitates

the joint optimization of transmit precoding, receiver

combining, and NOMA power allocation. However,

this optimization problem is non-convex and computa-

tionally intensive due to the high dimensionality of

the variables involved. Conventional methods, such as

mathematical derivation[10] and the iterative algo-

rithm[11] often struggle to find optimal solutions

efficiently. In order to address this issue, classical ma-

chine learning techniques can tackle non-convex opti-

mization problems[12].

However, the complexity of classical machine

learning algorithms tends to grow significantly as the

amount of data being processed increases. This escala-

tion in complexity often leads to longer computation

times and greater demand for computational

resources. This is primarily due to the serial process-

ing nature of neurons in classical computers. To ad-

dress this issue, quantum machine learning has

emerged as a promising solution[13]. The advantages

of quantum computing, such as parallel processing,

lead to lower complexity and reduced processing

times. By leveraging the principles of quantum com-

puting and machine learning, quantum machine learn-

ing can potentially reduce computational complexity

and improve processing speeds, offering a more effi-

cient and scalable approach to solving complex

problems. The inherent advantages of quantum com-

puting to tackle complex optimization problems, pro-

vide a robust framework for enhancing the efficiency

and effectiveness of these critical tasks[14,15].

To the best of the authors’ knowledge, the uti-

lization of QNN for joint optimization for both digital

precodercombiner and resource allocation is still

limited. Accordingly, the contribution of this study

proposes the use of a quantum neural network (QNN)

for the joint optimization of digital precoder-combiner

and resource allocation in multi-user multiple-input

multiple-output nonorthogonal multiple access (MU

MIMO-NOMA) systems.

The structure of this paper is as follows. Section

II presents the wireless system models for digital pre-

codercombiner and NOMA power allocation. Section

III describes the proposed quantum neural network

(QNN) approach. Section IV discusses and analyzes

the performance of the proposed QNN. Finally, the

conclusions are drawn in Section V.

Notations: Transpose and conjugate transpose are

denoted by (·)T and (·)H, respectively. (·)-1 indicates

inversion. ⊗ indicates Kronecker product. Normal

and circular normal distributions are presented as

(, ) and (, ), respectively, where  is

the mean and  is the variance. | · | and ‖·‖ are
indicating the absolute and norm values, respectively.

Ⅱ. Wireless System Model

This study is concerned with a single base station

(BS) serving multiple users (UEs) that are grouped

in NOMA groups. Subsequently, this study assumes

that each group consists of two users. The BS employs

a downlink communication MU MIMO-NOMA

system. The received signal yk,m at the k-th UE and

m-th group can be expressed as

(1)

where , , , denote the

channel matrix information, digital precoding, re-

ceiver combiner, transmitted data stream, additive

white Gaussian noise (AWGN) denoted as (0,

) at NRx receive antenna of each user, respectively.

In order to serve multiple UEs, the BS employs

a uniform planar antenna (UPA) with dimensions Stx

= MTx × NTx, consisting of two-dimensional antenna

elements. Conversely, each receiving UE utilizes a

uniform linear antenna (ULA) with NRx one-dimen-

sional array antenna elements. Thus, the downlink

channel matrix for the k-th UE at m-th group can be

expressed as
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(2)

where ~ (0, 1), ak,r, and ak,t denotes a com-

plex gain of u-th path, ULA array response vector,

and UPA array response vector, respectively. The ar-

ray response vector of ULA antennas can be expressed

as

(3)

where , the  denotes the wavelength, d

denotes the distance between two antennas which can

be defined as d = , and ∈ [0, 2π] is the elevation

angle of arrival (AoA). For a UPA the array response

vector can be expressed as

(4)

where ( , )∈ [0, 2π] denotes the elevation and

azimuth angles of departure (AoD).

2.1 Digital Precoder
As illustrated in Fig. 1, the transmitter BS generates

digital precoding vectors to serve multiple UEs.

Digital precoding is employed to enhance signal qual-

ity by directing the signal to the intended UEs. Let

vk,m be the precoding vectors for the k-th UE at the

m-th group. According to [16], the digital precoding

can be expressed as

(5)

where IK denotes the identity matrix with K × K di-

mension, Hk,m denotes the channel matrix for k-th UE

at the m-th group, and  denotes the optimization

variable that can be obtained from QNN.

2.2 Digital Combiner
On the other hand, at the receiver, the received sig-

nal undergoes processing, where a digital combiner

incorporating an RF chain is employed to integrate

and process the incoming signals. Let  be the opti-

mization variable that can be obtained from the QNN,

thus the optimal combiner ck,m for the k-th user at the

m-th group can be expressed as [17]

(6)

2.3 NOMA Power Allocation
Let us assume channel gains of the users in a

NOMA group are sorted in descending order as fol-

lows ￨H1￨2≥…≥￨HK￨2. Successive interference

cancellation (SIC) is applied at the receivers for mul-

ti-user detection and decoding to mitigate inter-user

Fig. 1. A digital precoder-combiner structure in MU MIMO-NOMA.
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interference. The received signal-to-interfer-

ence-plus-noise ratio (SINR) can be calculated as fol-

lows

(7)

where the  indicates the noise variance.
The power allocation for the k-th user in the m-th

group can be calculated as = , where

∈ [0, 1] is the NOMA power coefficient and is

the total power in the transmitting BS. The achievable

rate for the k-th user at the m-th group can be ex-

pressed as follows

(8)

where B is the bandwidth and M denotes the number

of grouping.

2.4 Problem Formulation
The objective function is to maximize the achiev-

able sum rate given precoder, combiner, and power

allocation in MU MIMO-NOMA which can be for-

mulated as follows:

(9a)

(9b)

(9c)

(9d)

Ⅲ. Quantum Neural Network for 
Precoder-Combiner and Power Allocation

This section presents the proposed QNN. The pro-

posed QNN network consists of one layer employed

to obtain optimization variables. The quantum circuit

of QNN is designed and presented in Fig. 2. Herein,

inputs of the network in classical values are mapped

into quantum states as qubits through the encoding

process. In this case, the number of qubits denoted

as Nqubits, possesses an identical dimension with the

network inputs, thus Nqubits = Ninputs. As an initial step,

each qubit is placed into a quantum superposition state

using a Hadamard operator which is defined as

pre-processing, expressed as

(10)

Subsequently, the pre-processed qubits are going

through a feed-forward process. The feed-forward

process begins with data encoding, where the classical

input is mapped onto the quantum states of qubits.

The unitary for input data in the y-th layer can be

expressed as

(11)

where RY(•) denotes the quantum gates for rotating

qubits around the Y−axis of the Bloch sphere1) within

1) Bloch sphere is a geometrical representation of the

Fig. 2. The scheme of the proposed QNN.
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 phase. Afterward, identical to data encoding, weight
encoding is also mapped onto the quantum states. The

unitary function of weight encoding in the y-th layer

can be expressed as

(12)

where RX(•) denotes the quantum gates for rotating

qubits around the X−axis by  phase. Subsequently,

a feed-forward process of QNN denoted by ,

can be expressed as

(13)

where wn denotes the trainable weights for the n-th

qubit, un denotes the classical input for the n-th qubit,

and CZ(·) denotes an operation of connecting two

qubits.

Considering the loss value is obtained as a classical

value, a quantum measurement is performed at the

end of the total layers to obtain outputs in real values.

The quantum measurement operation, denoted by

, can be expressed as

(14)

In order to mitigate the inherent perturbations pres-

ent within quantum measurement processes because

of the noise, the measurement is conducted for yshot

times. Therefore, the measurement outputs can be ex-

pressed as

(15)

quantum bits (qubits).

Based on the outputs, the loss of QNN can be cal-

culated as follows

(16)

where Ndata denotes number of training data in a batch,

while Ξ(y) denotes an objective output. Subsequently,

a gradient of the QNN can be calculated using param-

eter-shift rules[18] as follows

(17)

where ∈ [0, π] denotes a shifting parameter. Finally,
the trainable weights can be updated as follows

(18)

where  ∈ (0, 1] denotes the learning rate.

3.1 QNN for MU MIMO-NOMA Optimization
The details for solving the joint optimization prob-

lem in the MU MIMO-NOMA scenario can be de-

scribed as follows:

1. The inputs for the QNN are the channel matrices

for each UE, as described in Eq. (2). The total

number of elements in the channel matrix is

equal to the total number of inputs in the QNN

network.

2. The problem formulation has been presented in

Section II, where the optimized variables be-

come the output of the QNN. Specifically, the

optimization variables , , and  de-

note the precoders, combiner, and power alloca-

tion, respectively.

Ⅳ. Numerical Result

This section analyses the performance of QNN for

digital precoder-combiner optimization. The simu-

lation parameters are given in Table 1. It is worth

noting that quantum computers are still in the early

stages of development, and the number of qubits



The Journal of Korean Institute of Communications and Information Sciences '24-12 Vol.49 No.12

1744

available for use is currently limited. Therefore, this

study considers the low number of the antenna and

users. The quantum unitary UQNN was executed uti-

lizing a “basic simulator” backend in IBM Qiskit[19].

4.1 Loss
The training loss with respect to the number of

training episodes was presented in Fig. 3. In this

study, unsupervised learning was employed, which

contrasted with supervised learning, unsupervised

learning performed the optimization task without

needing reference data. Therefore, the loss function

can be expressed as LQNN = Rsum. As

can be seen, the loss function showed a decreasing

trend starting from the first training episode.

Furthermore, the loss is converged at 3-th training

episode.

Fig. 3. The training loss.

4.2 Achievable Sumrate
The achievable rate with respect to the transmitted

SNR in MU MIMO-NOMA is presented in Fig. 4 .

As shown, the achievable sum rate for QNN opti-

mization has improved compared to the unoptimized

scheme. In the unoptimized scheme, all the opti-

mization coefficients are set to 1, meaning there is

no optimization for the precoder and combiner.

Additionally, the power allocation coefficient is set

to 0.2 for near users and 0.8 for far users.

Fig. 4. The achievable sumrate.

4.3 Complexity Analysis
The complexity of QNN was analyzed as follows.

First, pre-processing was conducted as described in

Eq. (10), which utilized the H(·) operation, resulting

in (1). Second, the feed-forward for QNN was de-

scribed in Eq. (13). The weight encoding data utilized

the RY operation, resulting in (1). The

connection between each qubit utilized the CZ

operation, resulting in (Ninput). The

input encoding data utilized RX oper-

ation, resulting in (1). Thus, the total complexity

for ∈ (1) + (Ninput) + (1)≈ (Ninput).

Finally, the overall complexity of QNN (1) +

(Ninput) ≈ (Ninput). On the other hand, based on [14],

the complexity of a classical neural network can be

defined as ((Ninput)2). It can be concluded that the

complexity of the QNN is lower than the classical

neural network.

Parameters Values

Nuser 4

NTx 2

MTx 2

STx = NTx × MTx 4

NRx 2

B 8.64 MHz

Ndata 50

Ntest 1000

yshot 1024

a 0.01

Table 1. Parameters
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Ⅴ. Conclusions

This study proposed quantum neural network

(QNN) optimization for joint optimization in MU

MIMO-NOMA. Specifically, the QNN was applied to

the joint optimization of precoders, combiners, and

power allocation. The numerical results of MU

MIMO-NOMA utilizing the proposed QNN have been

presented. The results show that the proposed QNN

outperformed the unoptimized scheme by achieving

a higher achievable sum rate. The effects of employ-

ing different quantum circuit designs can be explored

in the future
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